
Getting started with
Kubernetes

Find out how Kubernetes is an
elegant solution to a wide range
of essential business problems.

Opensource.com

Opensource.com .

2	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

About Opensource.com

What is Opensource.com?

Opensource.com publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

. About the Author

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 3

Scott McCarty

Scott McCarty At Red Hat, Scott McCarty is technical product
manager for the container subsystem team,

which enables key product capabilities in OpenShift Container Platform and Red
Hat Enterprise Linux. Focus areas includes container runtimes, tools, and images.
Working closely with engineering teams, at both a product and upstream project
level, he combines personal experience with customer and partner feedback to
enhance and tailor strategic container features and capabilities.
Scott is a social media start-up veteran, an e-commerce old timer, and a weathered
government research technologist, with experience across a variety of companies
and organizations, from seven person startups to 12,000 employee technology
companies. This has culminated in a unique perspective on open source software
development, delivery, and maintenance.

Follow Scott McCarty

Twitter:	 https://twitter.com/fatherlinux

Opensource.com .

4	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

Introduction

Chapters

Get Involved | Additional Resources

Kubernetes is a dump truck: Here’s why 	 5

How to navigate the Kubernetes learning curve 	 6
Kubernetes basics: Learn how to drive first	 8
4 tools to help you drive Kubernetes	 10
Why containers and Kubernetes have the potential	 14
to run almost anything

Write for Us 	 15

. Introduction

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 5

figuration is relative. It really depends on what you are trying
to do. Kubernetes [1] is no different.

Building Kubernetes once isn’t too hard. Equipping Kuberne-
tes? Well, that gets harder. What did you think of KubeCon? How
many new projects were announced? Which ones are “real”?
Which ones should you learn? How deeply do you understand
Harbor, TikV, NATD, Vitess, Open Policy Agent? Not to mention

Envoy, eBPF, and a bunch of
the underlying technologies in
Linux? It feels a lot like building
dump trucks in 1904 with the in-
dustrial revolution in full swing.
Figuring out what screws, bolts,
metal, and pistons to use. (Ste-
ampunk, anyone?)

Building and equipping
Kubernetes, like a dump
truck, is a technical problem
you probably shouldn’t be
tackling if you are in financial
services, retail, biological re-

search, food services, and so forth. But, learning how to drive
Kubernetes is definitely something you should be learning.

Kubernetes, like a dump truck, is elegant for the wide va-
riety of technical problems it can solve (and the ecosystem
it drags along). So, I’ll leave you with a quote that one of my
computer science professors told us in my first year of col-
lege. She said, “one day, you will look at a piece of code and
say to yourself, ‘now that’s elegant!’”

Kubernetes is elegant.

Links
[1]	� https://kubernetes.io/

Dump trucks are elegant. Seriously, stay with me for
a minute. They solve a wide array of technical

problems in an elegant way. They can move dirt, gravel,
rocks, coal, construction material, or road barricades. They
can even pull trailers with other pieces of heavy equipment
on them. You can load a dump truck with five tons of dirt
and drive across the country with it. For a nerd like me,
that’s elegance.

But, they’re not easy to use.
Dump trucks require a special
driver’s license. They’re also
not easy to equip or maintain.
There are a ton of options
when you buy a dump truck
and a lot of maintenance.
But, they’re elegant for mov-
ing dirt.

You know what’s not el-
egant for moving dirt? A
late-model, compact sedan.
They’re way easier to buy.
Easier to drive. Easier to maintain. But, they’re terrible at
carrying dirt. It would take 200 trips to carry five tons of dirt,
and nobody would want the car after that.

Alright, you’re sold on using a dump truck, but you want
to build it yourself. I get it. I’m a nerd and I love building
things. But…

If you owned a construction company, you wouldn’t build
your own dump trucks. You definitely wouldn’t maintain the
supply chain to rebuild dump trucks (that’s a big supply
chain). But you would learn to drive one.

OK, my analogy is crude but easy to understand. Ease of
use is relative. Ease of maintenance is relative. Ease of con-

Dump trucks are an elegant solution to a wide range of essential business problems.

Kubernetes is a dump
truck: Here’s why

How to navigate the Kubernetes learning curve . . .

6	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

The journey to Kubernetes [1] often starts
with running one container on

one host. You quickly discover how easy it is to run new ver-
sions of software, how easy it is to share that software with
others, and how easy it is for those users to run it the way
you intended.

But then you need

• �Two containers
• �Two hosts
It’s easy to fire up one web server on port 80 with a

container, but what happens when you need to fire up a
second container on port 80? What happens when you
are building a production environment and you need the
containerized web server to fail over to a second host?

How to navigate the
Kubernetes learning curve
Kubernetes is like a dump truck. It’s elegant for solving the problems it’s designed for, but you have to
master the learning curve first.

Kubernetes business model

. How to navigate the Kubernetes learning curve

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 7

The short answer, in either case, is you have to move into
container orchestration.

Inevitably, when you start to handle the two containers or
two hosts problem, you’ll introduce complexity and, hence,
a learning curve. The two services (a more generalized ver-
sion of a container) / two hosts problem has been around
for a long time and has always introduced complexity.

Historically, this would have involved load balancers, clus-
tering software, and even clustered file systems. Configu-
ration logic for every service is embedded in every system
(load balancers, cluster software, and file systems). Running
60 or 70 services, clustered, behind load balancers is com-
plex. Adding another new service is also complex. Worse,
decommissioning a service is a nightmare. Thinking back on
my days of troubleshooting production MySQL and Apache
servers with logic embedded in three, four, or five different
places, all in different formats, still makes my head hurt.

Kubernetes elegantly solves all these problems with one
piece of software:

1. �Two services (containers): Check
2. �Two servers (high availability): Check
3. �Single source of configuration: Check
4. �Standard configuration format: Check
5. �Networking: Check
6. �Storage: Check
7. �Dependencies (what services talk to what databases):

Check
8. �Easy provisioning: Check
9. �Easy de-provisioning: Check (perhaps Kubernetes’

most powerful piece)
Wait, it’s starting to look like Kubernetes is pretty elegant and
pretty powerful. It is. You can model an entire miniature IT
universe in Kubernetes.

So yes, there is a learning curve when starting to use a
giant dump truck (or any professional equipment). There’s
also a learning curve to use Kubernetes, but it’s worth it be-
cause you can solve so many problems with one tool. If you
are apprehensive about the learning curve, think through all
the underlying networking, storage, and security problems in
IT infrastructure and envision their solutions today—they’re
not easier. Especially when you introduce more and more
services, faster and faster. Velocity is the goal nowadays, so
give special consideration to the provisioning and de-provi-
sioning problem.

But don’t confuse the learning curve for building or equip-
ping Kubernetes (picking the right mud flaps for your dump
truck can be hard, LOL) with the learning curve for using it.
Learning to build your own Kubernetes with so many differ-
ent choices at so many different layers (container engine,
logging, monitoring, service mesh, storage, networking),
and then maintaining updated selections of each component
every six months, might not be worth the investment—but
learning to use it is absolutely worth it.

I eat, sleep, and breathe Kubernetes and containers ev-
ery day, and even I struggle to keep track of all the ma-
jor new projects announced literally almost every day. But
there isn’t a day that I’m not excited about the operational
benefits of having a single tool to model an entire IT mini-
verse. Also, remember Kubernetes has matured a ton and
will continue to do so. Like Linux and OpenStack before it,
the interfaces and de facto projects at each layer will ma-
ture and become easier to select.

Links
[1]	 �https://kubernetes.io/

Kubernetes basics: Learn how to drive first . . .

8	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

Recently, I saw a thread on Reddit about essential
Kubernetes projects [1]. People seem

hungry to know the bare minimum they should learn to get
started with Kubernetes. The “driving a dump truck analogy”
helps frame the problem to stay on track. Someone in the
thread mentioned that you shouldn’t be running your own
registry unless you have to, so people are already nibbling at
this idea of driving Kubernetes instead of building it.

The API is Kubernetes’ engine and transmission. Like a
dump truck’s steering wheel, clutch, gas, and brake pedal, the
YAML or JSON files you use to build your applications are the
primary interface to the machine. When you’re first learning
Kubernetes, this should be your primary focus. Get to know
your controls. Don’t get sidetracked by all the latest and great-
est projects. Don’t try out an experimental dump truck when
you are just learning to drive. Instead, focus on the basics.

Defined and actual states
First, Kubernetes works on the principles of defined state
and actual state.

Humans (developers/sysadmins/operators) specify the
defined state using the YAML/JSON files they submit to the
Kubernetes API. Then, Kubernetes uses a controller to an-
alyze the difference between the new state defined in the
YAML/JSON and the actual state in the cluster.

In the example “Defined state and actual state,” the Rep-
lication Controller sees the difference between the three
pods specified by the user, with one Pod running, and
schedules two more. If you were to log into Kubernetes and
manually kill one of the Pods, it would start another one to
replace it—over and over and over. Kubernetes does not
stop until the actual state matches the defined state. This
is super powerful.

Primitives
Next, you need to understand what primitives you can specify
in Kubernetes.

It’s more than just Pods; it’s Deployments, Persistent Vol-
ume Claims, Services, routes, etc. With Kubernetes platform
OpenShift [2], you can add builds and BuildConfigs. It will
take you a day or so to get decent with each of these prim-
itives. Then you can dive in deeper as your use cases be-
come more complex.

Mapping developer-native to traditional IT
environments
Finally, start thinking about how this maps to what you do in
a traditional IT environment.

The user has always been trying to solve a business
problem, albeit a technical one. Historically, we have used
things like playbooks to tie business logic to sets of IT sys-
tems with a single language. This has always been great
for operations staff, but it gets hairier when you try to ex-
tend this to developers.

We have never been able to truly specify how a set of
IT systems should behave and interact together, in a de-

Kubernetes basics:
Learn how to drive first
Quit focusing on new projects and get focused on getting your
Kubernetes dump truck commercial driver's license.

Defined state and actual state

. Kubernetes basics: Learn how to drive first

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 9

veloper-native way, until Kubernetes. If you think about it,
we are extending the ability to manage storage, network,

and compute resources in a very portable and declara-
tive way with the YAML/JSON files we write in Kuberne-

tes, but they are always
mapped back to “real”
resources somewhere.
We just don’t have to
worry about it in devel-
oper mode.

So, quit focusing on
new projects in the Ku-
bernetes ecosystem and
get focused on driving it.

Links
[1]	� https://www.reddit.

com/r/kubernetes/
comments/
bsoixc/what_are_
the_essential_
kubernetes_related/

[2]	 �https://www.openshift.
com/

Kubernetes primitives

Mapping developer-native to traditional IT environments

4 tools to help you drive Kubernetes . . .

10	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

I want to emphasize this point: the set of
primitives that you need to learn

are the easiest set of primitives that you can learn to
achieve production-quality application deployments
(i.e., high-availability [HA], multiple containers, multiple
applications). Stated another way, learning the set of
primitives built into Kubernetes is easier than learning
clustering software, clustered file systems, load balanc-
ers, crazy Apache configs, crazy Nginx configs, routers,
switches, firewalls, and storage backends—all the things
you would need to model a simple HA application in a tra-
ditional IT environment (for vir-
tual machines or bare metal).

In this article, I’ll share some
tools that will help you learn to
drive Kubernetes quickly.

1. Katacoda
Katacoda [1] is the easiest way to
test-drive a Kubernetes cluster,
hands-down. With one click and
five seconds of time, you have
a web-based terminal plumbed
straight into a running Kuberne-
tes cluster. It’s magnificent for
playing and learning. I even use
it for demos and testing out new
ideas. Katacoda provides a com-
pletely ephemeral environment
that is recycled when you finish
using it.

Katacoda provides ephemeral playgrounds and deeper lab
environments. For example, the Linux Container Internals
Lab [4], which I have run for the last three or four years, is
built in Katacoda.

Katacoda maintains a bunch of Kubernetes and cloud
tutorials [5] on its main site and collaborates with Red
Hat to support a dedicated learning portal for Open-
Shift [6]. Explore them both—they are excellent learning
resources.

When you first learn to drive a dump truck, it’s always best
to watch how other people drive first.

4 tools to help you drive
Kubernetes
Learning to drive Kubernetes is more important that knowing
how to build it, and these tools will get you on the road fast.

OpenShift Playground [2]

. 4 tools to help you drive Kubernetes

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 11

2. Podman generate kube
The podman generate kube
command is a brilliant little sub-
command that helps users nat-
urally transition from a simple
container engine running simple
containers to a cluster use case
running many containers (as I
described in the last chapter).
Podman [7] does this by letting
you start a few containers, then
exporting the working Kube
YAML, and firing them up in Ku-
bernetes. Check this out (pssst,
you can run it in this Katacoda
lab [8], which already has Pod-
man and OpenShift).

First, notice the syntax to run
a container is strikingly similar to
Docker:

podman run -dtn two-pizza quay.io/fatherlinux/two-pizza

But this is something other container engines don’t do:

podman generate kube two-pizza

The output:

Generation of Kubernetes YAML is still under development!

#

Save the output of this file and use kubectl create -f to import

it into Kubernetes.

#

Created with podman-1.3.1

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: "2019-06-07T08:08:12Z"

 labels:

 app: two-pizza

 name: two-pizza

spec:

 containers:

 - command:

 - /bin/sh

 - -c

 - �bash -c 'while true; do /usr/bin/nc -l -p 3306

< /srv/hello.txt; done'

 env:

 - name: PATH

 value: �/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin

 - name: TERM

 value: xterm

 - name: HOSTNAME

 - name: container

 value: oci

 image: quay.io/fatherlinux/two-pizza:latest

 name: two-pizza

 resources: {}

 securityContext:

 allowPrivilegeEscalation: true

 capabilities: {}

 privileged: false

 readOnlyRootFilesystem: false

 tty: true

 workingDir: /

status: {}

apiVersion: v1

kind: Service

metadata:

 creationTimestamp: "2019-06-07T08:08:12Z"

 labels:

 app: two-pizza

 name: two-pizza

spec:

 selector:

 app: two-pizza

 type: NodePort

status:

 loadBalancer: {}

You now have some working Kubernetes YAML, which
you can use as a starting point for mucking around and
learning, tweaking, etc. The -s flag created a service for

Kubernetes Playground [3]

4 tools to help you drive Kubernetes . . .

12	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

you. Brent Baude [9] is even working on new features
like adding Volumes/Persistent Volume Claims [10]. For
a deeper dive, check out Brent’s amazing work in his blog
post “Podman can now ease the transition to Kubernetes
and CRI-O.” [11]

3. oc new-app
The oc new-app command is extremely powerful. It’s Open-
Shift-specific, so it’s not available in default Kubernetes, but
it’s really useful when you’re starting to learn Kubernetes.
Let’s start with a quick command to create a fairly sophisti-
cated application:

oc new-project -n example

oc �new-app -f https://raw.githubusercontent.com/openshift/

origin/master/examples/quickstarts/cakephp-mysql.json

With oc new-app, you can literally steal templates from the
OpenShift developers and have a known, good starting point

when developing primitives to describe your own applica-
tions. After you run the above command, your Kubernetes
namespace (in OpenShift) will be populated by a bunch of
new, defined resources.

oc get all

See the “occ new-app output”:
The beauty of this is that you can delete Pods, watch

the replication controllers recreate them, scale Pods up,
and scale them down. You can play with the template and
change it for other applications (which is what I did when I
first started).

4. Visual Studio Code
I saved one of my favorites for last. I use vi [12] for most of
my work, but I have never found a good syntax highlight-
er and code completion plugin for Kubernetes (if you have
one, let me know). Instead, I have found that Microsoft’s

NAME READY STATUS RESTARTS AGE

pod/cakephp-mysql-example-1-build 0/1 Completed 0 4m

pod/cakephp-mysql-example-1-gz65l 1/1 Running 0 1m

pod/mysql-1-nkhqn 1/1 Running 0 4m

NAME DESIRED CURRENT READY AGE

replicationcontroller/cakephp-mysql-example-1 1 1 1 1m

replicationcontroller/mysql-1 1 1 1 4m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/cakephp-mysql-example ClusterIP 172.30.234.135 <none> 8080/TCP 4m

service/mysql ClusterIP 172.30.13.195 <none> 3306/TCP 4m

NAME REVISION DESIRED CURRENT TRIGGERED BY

deploymentconfig.apps.openshift.io/cakephp-mysql-example 1 1 1 config,image(cakephp-mysql-example:latest)

deploymentconfig.apps.openshift.io/mysql 1 1 1 config,image(mysql:5.7)

NAME TYPE FROM LATEST

buildconfig.build.openshift.io/cakephp-mysql-example Source Git 1

NAME TYPE FROM STATUS STARTED DURATION

build.build.openshift.io/cakephp-mysql-example-1 Source Git@47a951e Complete 4 minutes ago 2m27s

NAME DOCKER REPO TAGS
UPDATED

im�agestream.image.openshift.io/cakephp-mysql-example docker-registry.default.svc:5000/example/cakephp-mysql-example latest
About aminute ago

NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD

ro�ute.route.openshift.io/cakephp-mysql-example cakephp-mysql-example-example.2886795271-80-rhsummit1.environments.katacoda.com
cakephp-mysql-example <all> None

occ new-app output

. 4 tools to help you drive Kubernetes

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 13

ments, etc. This is a really nice feature when you are build-
ing these files from scratch or even modifying the files you
create with Podman generate kube.

Conclusion
These four tools (six if you count the two plugins) will help
you learn to drive Kubernetes, instead of building or equip-
ping it.

Links
[1]	 �https://learn.openshift.com/subsystems/container-

internals-lab-2-0-part-1
[2]	 �https://learn.openshift.com/playgrounds/openshift311/
[3]	� https://katacoda.com/courses/kubernetes/playground
[4]	 �https://learn.openshift.com/subsystems/container-

internals-lab-2-0-part-1
[5]	� https://katacoda.com/learn
[6]	� http://learn.openshift.com/
[7]	� https://podman.io/
[8]	 �https://learn.openshift.com/subsystems/container-

internals-lab-2-0-part-1
[9]	� https://developers.redhat.com/blog/author/bbaude/
[10]	� https://github.com/containers/libpod/issues/2303
[11]	 �https://developers.redhat.com/blog/2019/01/29/podman-

kubernetes-yaml/
[12]	� https://en.wikipedia.org/wiki/Vi
[13]	� https://code.visualstudio.com/

VS Code [13] has a killer set of plugins that complete the
creation of Kubernetes resources and provide boilerplate.

First, install Kubernetes and YAML plugins shown in the
“VS Code plugins UI” image.

Then, you can create a new YAML file from scratch and
get auto-completion of Kubernetes resources. The example
“Autocomplete in VS Code” shows a Service.

When you use autocomplete and select the Service re-
source, it fills in some boilerplate for the object. This is mag-
nificent when you are first learning to drive Kubernetes. You
can build Pods, Services, Replication Controllers, Deploy-

VS Code plugins UI

Autocomplete in VS Code VS Code autocomplete filling in boilerplate for an object

Why containers and Kubernetes have the potential to run almost anything

14	 Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com

From the beginning, Kubernetes has been able to
run web-based workloads (contain-

erized) really well. Workloads like web servers, Java, and
associated app servers (PHP, Python, etc) just work. The
supporting services like DNS, load balancing, and SSH (re-
placed by kubectl exec) are handled by the platform. For the
majority of my career, these are the workloads I ran in pro-
duction, so I immediately recognized the power of running
production workloads with Kubernetes, aside from DevOps,
aside from agile. There is incremental efficiency gain even
if we barely change our cultural practices. Commissioning
and decommissioning become extremely easy, which were
terribly difficult with traditional IT. So, since the early days,
Kubernetes has given me all of the basic primitives I need to
model a production workload, in a single configuration lan-
guage (Kube YAML/Json).

But, what happened if you needed to run Multi-master
MySQL with replication? What about redundant data using
Galera? How do you do snapshotting and backups? What
about sophisticated workloads like SAP? Day zero (deploy-
ment) with simple applications (web servers, etc) has been
fairly easy with Kubernetes, but day two operations and
workloads were not tackled. That’s not to say that day two
operations with sophisticated workloads were harder than
traditional IT to solve, but they weren’t made easier with
Kubernetes. Every user was left to devise their own genius
ideas for solving these problems, which is basically the sta-
tus quo today. Over the last 5 years, the number one type
of question I get is around day two operations of complex
workloads.

Thankfully, that’s changing as we speak with the advent of
Kubernetes Operators. With the advent of Operators, we now
have a framework to codify day two operations knowledge into
the platform. We can now apply the same defined state, ac-
tual state methodology that I described in Kubernetes basics:
Learn how to drive first [1]—we can now define, automate,
and maintain a wide range of systems administration tasks.

I often refer to Operators as “Robot Sysadmins” because
they essentially codify a bunch of the day two operations
knowledge that a subject matter expert (SME, like database

administrator or, systems administrator) for that workload
type (database, web server, etc) would normally keep in their
notes somewhere in a wiki. The problem with these notes
being in a wiki is, for the knowledge to be applied to solve a
problem, we need to:

1. �Generate an event, often a monitoring system finds a
fault and we create a ticket

2. �Human SME has to investigate the problem, even if it’s
something we’ve seen a million times before

3. �Human SME has to execute the knowledge (perform
the backup/restore, configure the Galera or transaction
replication, etc)

With Operators, all of this SME knowledge can be embedded
in a separate container image which is deployed before the
actual workload. We deploy the Operator container, and then
the Operator deploys and manages one or more instances of
the workload. We then manage the Operators using some-
thing like the Operator Lifecycle Manager (Katacoda tutorial).

So, as we move forward with Kubernetes, we not only
simplify the deployment of applications, but also the man-
agement over the lifecycle. Operators also give us the tools
to manage very complex, stateful applications with deep
configuration requirements (clustering, replication, repair,
backup/restore. And, the best part is, the people who built
the container are probably the subject matter experts for day
two operations, so now they can embed that knowledge into
the operations environment.

The conclusion to this e-book
The future of Kubernetes is bright, and like virtualization

before it, workload expansion is inevitable. Learning how to
drive Kubernetes is probably the biggest investment that a
developer or sysadmin can make in their own career growth.
As the workloads expand, so will the career opportunities.
So, here’s to driving an amazing dump truck that’s very ele-
gant at moving dirt... [2]

Links
[1]	 �https://opensource.com/article/19/6/kubernetes-basics
[2]	 �https://opensource.com/article/19/6/kubernetes-dump-truck

Why containers and
Kubernetes have the potential
to run almost anything
Go beyond deployment of simple applications and tackle day two operations with Kubernetes Operators.

. Write for Us

Getting started with Kubernetes ... CC BY-SA 4.0 ... Opensource.com	 15

In 2010, Red Hat CEO Jim Whitehurst announced the launch of Opensource.com
in a post titled Welcome to the conversation on Opensource.com. He explained,
“This site is one of the ways in which Red Hat gives something back to the open
source community. Our desire is to create a connection point for conversations
about the broader impact that open source can have—and is having—even beyond
the software world.” he wrote, adding, “All ideas are welcome, and all participants
are welcome. This will not be a site for Red Hat, about Red Hat. Instead, this will be
a site for open source, about the future.”

By 2013, Opensource.com was publishing an average of 46 articles per month,
and in March 2016, Opensource.com surpassed 1-million page views for the first
time. In 2019, Opensource.com averages more than 1.5 million page views and
90 articles per month.

More than 60% of our content is contributed by members of open source communities,
and additional articles are written by the editorial team and other Red Hat contributors.
A small, international team of staff editors and Community Moderators work closely
with contributors to curate, polish, publish, and promote open source stories from
around the world.

Would you like to write for us? Send pitches and inquiries to open@opensource.com.

To learn more, read 7 big reasons to contribute to Opensource.com.

Write for Us

