
A sysadmin’s guide
to Bash scripting

Opensource.com

https://opensource.com/

OPENSOURCE.COM .

2	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 3

. ABOUT THE AUTHOR

DAVID BOTH

DAVID BOTH IS AN OPEN SOURCE Software and GNU/Linux advocate, trainer,
writer, and speaker who lives in Raleigh North Carolina. He is a

strong proponent of and evangelist for the “Linux Philosophy.”
David has been in the IT industry for nearly 50 years. He has taught RHCE classes for
Red Hat and has worked at MCI Worldcom, Cisco, and the State of North Carolina. He has
been working with Linux and Open Source Software for over 20 years.
David prefers to purchase the components and build his own computers from scratch to
ensure that each new computer meets his exacting specifications. His primary workstation
is an ASUS TUF X299 motherboard and an Intel i9 CPU with 16 cores (32 CPUs) and
64GB of RAM in a ThermalTake Core X9 case.
David has written articles for magazines including, Linux Magazine and Linux Journal. His
article “Complete Kickstart,” co-authored with a colleague at Cisco, was ranked 9th in the Linux
Magazine Top Ten Best System Administration Articles list for 2008. David currently writes
prolifically for OpenSource.com and Enable SysAdmin.
He currently has four books published at Apress,
“The Linux Philosophy for SysAdmins,” and “Using
and Administering Linux: Zero to SysAdmin,” a Linux
self-study training course in three volumes.

FOLLOW DAVID BOTH

Email:	 LinuxGeek46@both.org
Twitter:	@LinuxGeek46

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
mailto:LinuxGeek46%40both.org?subject=
https://twitter.com/LinuxGeek46

CONTENTS . . .

4	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

CHAPTERS

Introduction to automation with Bash scripts 	 5

Creating a Bash script template	 8

How to add a Help facility to your Bash program	 11

Testing your Bash script	 15

“This guide is partially based on Volume 2, Chapter 10 of
David Both’s three-part Linux self-study course, Using and
Administering Linux—Zero to SysAdmin.”

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 5

SYSADMINS, those of us who run and
manage Linux computers

most closely, have direct access to tools that help us
work more efficiently. To help you use these tools to their
maximum benefit to make your life easier, this guide ex-
plores using automation in the form of Bash shell scripts.
It covers:
• �The advantages of automation with Bash shell scripts
• �Why using shell scripts is a better choice for sysadmins

than compiled languages like C or C++
• �Creating a set of requirements for new scripts
• �Creating simple Bash shell scripts from command-line in-

terface (CLI) programs
• �Enhancing security through using the user ID (UID) run-

ning the script
• �Using logical comparison tools to provide execution flow

control for command-line programs and scripts
• �Using command-line options to control script functionality
• �Creating Bash functions that can be called from one or

more locations within a script
• �Why and how to license your code as open source
• �Creating and implementing a simple test plan
I previously wrote a series of articles about Bash com-
mands and syntax and creating Bash programs at the
command line, which you can find in the references sec-
tion at the end of this part. But this four part guide is as
much about creating scripts (and some techniques that
I find useful) as it is about Bash commands and syntax.

Why I use shell scripts
In Chapter 9 of The Linux Philosophy for Sysadmins [1], I write:

“A sysadmin is most productive when thinking—
thinking about how to solve existing problems
and about how to avoid future problems; thinking
about how to monitor Linux computers in order to
find clues that anticipate and foreshadow those
future problems; thinking about how to make
[their] job more efficient; thinking about how to
automate all of those tasks that need to be per-
formed whether every day or once a year.”

“Sysadmins are next most productive when creat-
ing the shell programs that automate the solutions
that they have conceived while appearing to be un-
productive. The more automation we have in place,
the more time we have available to fix real problems
when they occur and to contemplate how to auto-
mate even more than we already have.”

This first part explores why shell scripts are an important tool
for the sysadmin and the basics of creating a very simple
Bash script.

Why automate?
Have you ever performed a long and complex task at the
command line and thought, “Glad that’s done. Now I never
have to worry about it again!”? I have—frequently. I ultimate-
ly figured out that almost everything that I ever need to do
on a computer (whether mine or one that belongs to an em-
ployer or a consulting customer) will need to be done again
sometime in the future.

Of course, I always think that I will remember how I did the
task. But, often, the next time is far enough into the future
that I forget that I have ever done it, let alone how to do it.
I started writing down the steps required for some tasks on
bits of paper, then thought, “How stupid of me!” So I trans-
ferred those scribbles to a simple notepad application on my
computer, until one day, I thought again, “How stupid of me!”
If I am going to store this data on my computer, I might as
well create a shell script and store it in a standard location,
like /usr/local/bin or ~/bin, so I can just type the name of the
shell program and let it do all the tasks I used to do manually.

For me, automation also means that I don’t have to remem-
ber or recreate the details of how I performed the task in order
to do it again. It takes time to remember how to do things
and time to type in all the commands. This can become a sig-
nificant time sink for tasks that require typing large numbers
of long commands. Automating tasks by creating shell scripts
reduces the typing necessary to perform routine tasks.

Shell scripts
Writing shell programs—also known as scripts—is the best
strategy for leveraging my time. Once I write a shell program,

Introduction to automation
with Bash scripts
In the first part in this four-part guide, learn how to create a simple shell script
and why they are the best way to automate tasks.

. INTRODUCTION TO AUTOMATION WITH BASH SCRIPTS

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.both.org/%3Fpage_id%3D903

6	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

[student@testvm1 ~]$./hello

Hello world!

This is the simplest Bash program you may ever create—a
single statement in a file. For this exercise, your complete
shell script will be built around this simple Bash statement.
The function of the program is irrelevant for this purpose,
and this simple statement allows you to build a program
structure—a template for other programs—without being
concerned about the logic of a functional purpose. You can
concentrate on the basic program structure and creating your
template in a very simple way, and you can create and test
the template itself rather than a complex functional program.

Shebang
The single statement works fine as long as you use Bash or
a shell compatible with the commands used in the script. If
no shell is specified in the script, the default shell will be used
to execute the script commands.

The next task is to ensure that the script will run using the
Bash shell, even if another shell is the default. This is accom-
plished with the shebang line. Shebang is the geeky way to
describe the #! characters that explicitly specify which shell
to use when running the script. In this case, that is Bash,
but it could be any other shell. If the specified shell is not
installed, the script will not run.

Add the shebang line as the first line of the script, so now
it looks like this:

#!/usr/bin/bash

echo "Hello world!"

Run the script again—you should see no difference in the
result. If you have other shells installed (such as ksh, csh,
tcsh, zsh, etc.), start one and run the script again.

Scripts vs. compiled programs
When writing programs to automate—well, everything—
sysadmins should always use shell scripts. Because shell
scripts are stored in ASCII text format, they can be viewed
and modified by humans just as easily as they can by com-
puters. You can examine a shell program and see exactly
what it does and whether there are any obvious errors in the
syntax or logic. This is a powerful example of what it means
to be open.

I know some developers consider shell scripts something
less than “true” programming. This marginalization of shell
scripts and those who write them seems to be predicated
on the idea that the only “true” programming language is
one that must be compiled from source code to produce
executable code. I can tell you from experience that this is
categorically untrue.

I have used many languages, including BASIC, C, C++,
Pascal, Perl, Tcl/Expect, REXX (and some of its variations,

I can rerun it as many times as I need to. I can also update
my shell scripts to compensate for changes from one release
of Linux to the next, installing new hardware and software,
changing what I want or need to accomplish with the script,
adding new functions, removing functions that are no longer
needed, and fixing the not-so-rare bugs in my scripts. These
kinds of changes are just part of the maintenance cycle for
any type of code.

Every task performed via the keyboard in a terminal
session by entering and executing shell commands can
and should be automated. Sysadmins should automate
everything we are asked to do or decide needs to be done.
Many times, doing the automation upfront saves me time
the first time.

One Bash script can contain anywhere from a few com-
mands to many thousands. I have written Bash scripts with
only one or two commands, and I have written a script with
over 2,700 lines, more than half of which are comments.

Getting started
Here’s a trivial example of a shell script and how to create
it. In my earlier guide on Bash command-line programming,
I used the example from every book on programming I have
ever read: “Hello world.” From the command line, it looks
like this:

[student@testvm1 ~]$ echo "Hello world"

Hello world

By definition, a program or shell script is a sequence of in-
structions for the computer to execute. But typing them into
the command line every time is quite tedious, especially
when the programs are long and complex. Storing them in a
file that can be executed with a single command saves time
and reduces the possibility for errors to creep in.

I recommend trying the following examples as a non-root
user on a test system or virtual machine (VM). Although the
examples are harmless, mistakes do happen, and being
safe is always wise.

The first task is to create a file to contain your program.
Use the touch command to create the empty file, hello, then
make it executable:

[student@testvm1 ~]$ touch hello

[student@testvm1 ~]$ chmod 774 hello

Now, use your favorite editor to add the following line to the
file:

echo "Hello world"

Save the file and run it from the command line. You can
use a separate shell session to execute the scripts in this
guide:

INTRODUCTION TO AUTOMATION WITH BASH SCRIPTS .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 7

including Object REXX), many shell languages (including
Korn, csh and Bash), and even some assembly language.
Every computer language ever devised has had one pur-
pose: to allow humans to tell computers what to do. When
you write a program, regardless of the language you choose,
you are giving the computer instructions to perform specific
tasks in a specific sequence.

Scripts can be written and tested far more quickly than
compiled languages. Programs usually must be written
quickly to meet time constraints imposed by circumstances
or the pointy-haired boss. Most scripts that sysadmins write
are to fix a problem, to clean up the aftermath of a problem,
or to deliver a program that must be operational long before
a compiled program could be written and tested.

Writing a program quickly requires shell programming be-
cause it enables a quick response to the needs of the cus-
tomer—whether that is you or someone else. If there are
problems with the logic or bugs in the code, they can be
corrected and retested almost immediately. If the original set
of requirements is flawed or incomplete, shell scripts can be
altered very quickly to meet the new requirements. In gen-
eral, the need for speed of development in the sysadmin’s
job overrides the need to make the program run as fast as
possible or to use as little as possible in the way of system
resources like RAM.

Most things sysadmins do take longer to figure out how to
do than to execute. Thus, it might seem counterproductive
to create shell scripts for everything you do. It takes some

time to write the scripts and make them into tools that pro-
duce reproducible results and can be used as many times
as necessary. The time savings come every time you can
run the script without having to figure out (again) how to do
the task.

Final thoughts
This part didn’t get very far with creating a shell script, but
it did create a very small one. It also explored the reasons
for creating shell scripts and why they are the most efficient
option for the system administrator (rather than compiled
programs).

In the next part, you will begin creating a Bash script tem-
plate that can be used as a starting point for other Bash
scripts. The template will ultimately contain a Help facility,
a GNU licensing statement, a number of simple functions,
and some logic to deal with those options, as well as others
that might be needed for the scripts that will be based on
this template.

Resources
• �How to program with Bash: Syntax and tools
• �How to program with Bash: Logical operators and shell

expansions
• �How to program with Bash: Loops

Links
[1]	 �http://www.both.org/?page_id=903

. INTRODUCTION TO AUTOMATION WITH BASH SCRIPTS

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/programming-bash-syntax-tools
https://opensource.com/article/19/10/programming-bash-logical-operators-shell-expansions
https://opensource.com/article/19/10/programming-bash-logical-operators-shell-expansions
https://opensource.com/article/19/10/programming-bash-loops
http://www.both.org/%3Fpage_id%3D903

8	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

CREATING A BASH SCRIPT TEMPLATE .

IN THE FIRST PART in this guide, you created a
very small, one-line Bash script

and explored the reasons for creating shell scripts and why
they are the most efficient option for the system adminis-
trator, rather than compiled
programs.

In this second part, you will
begin creating a Bash script
template that can be used as
a starting point for other Bash
scripts. The template will ulti-
mately contain a Help facility,
a licensing statement, a num-
ber of simple functions, and
some logic to deal with those
options and others that might
be needed for the scripts that
will be based on this template.

Why create a template?
Like automation in general, the idea behind creating a tem-
plate is to be the “lazy sysadmin [1].” A template contains
the basic components that you want in all of your scripts. It
saves time compared to adding those components to every
new script and makes it easy to start a new script.

Although it can be tempting to just throw a few com-
mand-line Bash statements together into a file and make it
executable, that can be counterproductive in the long run. A
well-written and well-commented Bash program with a Help
facility and the capability to accept command-line options
provides a good starting point for sysadmins who maintain
the program, which includes the programs that you write and
maintain.

The requirements
You should always create a set of requirements for every
project you do. This includes scripts, even if it is a simple
list with only two or three items on it. I have been involved in
many projects that either failed completely or failed to meet
the customer’s needs, usually due to the lack of a require-
ments statement or a poorly written one.

The requirements for this Bash template are pretty simple:
1. �Create a template that can be used as the starting point

for future Bash programming projects.
2. �The template should follow standard Bash programming

practices.
3. �It must include:

• �A heading section that can be used to describe the func-
tion of the program and a changelog

• �A licensing statement
• �A section for functions

• �A Help function
• �A function to test wheth-

er the program user is
root

• �A method for evaluating
command-line options

The basic structure
A basic Bash script has three
sections. Bash has no way
to delineate sections, but the
boundaries between the sec-
tions are implicit.

• �All scripts must begin with the shebang (#!), and this must
be the first line in any Bash program.

• �The functions section must begin after the shebang and
before the body of the program. As part of my need to doc-
ument everything, I place a comment before each function
with a short description of what it is intended to do. I also
include comments inside the functions to elaborate further.
Short, simple programs may not need functions.

• �The main part of the program comes after the function
section. This can be a single Bash statement or thousands
of lines of code. One of my programs has a little over 200
lines of code, not counting comments. That same program
has more than 600 comment lines.

That is all there is—just three sections in the structure of any
Bash program.

Leading comments
I always add more than this for various reasons. First, I add
a couple of sections of comments immediately after the she-
bang. These comment sections are optional, but I find them
very helpful.

The first comment section is the program name and de-
scription and a change history. I learned this format while
working at IBM, and it provides a method of documenting the
long-term development of the program and any fixes applied
to it. This is an important start in documenting your program.

The second comment section is a copyright and license
statement. I use GPLv2, and this seems to be a standard
statement for programs licensed under GPLv2. If you use a
different open source license, that is fine, but I suggest add-

Creating a Bash script template
In the second part in this guide, create a fairly simple template that you can
use as a starting point for other Bash programs, then test it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/7/how-be-lazy-sysadmin

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 9

ing an explicit statement to the code to eliminate any possible
confusion about licensing. Scott Peterson’s article The source
code is the license [2] helps explain the reasoning behind this.

So now the script looks like this:

#!/bin/bash

###

scriptTemplate

#

Use this template as the beginning of a new program. Place

a short description of the script here.

#

Change History

11/11/2019 David Both Original code. This is a template

for creating new Bash shell

scripts.

Add new history entries as needed.#

#

#

###

###

###

#

Copyright (C) 2007, 2019 David Both

LinuxGeek46@both.org

#

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 2 of the License, or (at your option) any

later version.

#

This program is distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

#

You should have received a copy of the GNU General Public

License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330,

Boston, MA 02111-1307 USA

#

###

###

###

echo "hello world!"

Run the revised program to verify that it still works as
expected.

About testing
Now is a good time to talk about testing.

“There is always one more bug.”
— Lubarsky’s Law of Cybernetic Entomology

Lubarsky—whoever that might be—is correct. You can nev-
er find all the bugs in your code. For every bug I find, there
always seems to be another that crops up, usually at a very
inopportune time.

Testing is not just about programs. It is also about veri-
fication that problems—whether caused by hardware, soft-
ware, or the seemingly endless ways users can find to break
things—that are supposed to be resolved actually are. Just
as important, testing is also about ensuring that the code is
easy to use and the interface makes sense to the user.

Following a well-defined process when writing and testing
shell scripts can contribute to consistent and high-quality re-
sults. My process is simple:
1. �Create a simple test plan.
2. �Start testing right at the beginning of development.
3. �Perform a final test when the code is complete.
4. �Move to production and test more.

The test plan
There are lots of different formats for test plans. I have
worked with the full range—from having it all in my head; to a
few notes jotted down on a sheet of paper; and all the way to
a complex set of forms that require a full description of each
test, which functional code it would test, what the test would
accomplish, and what the inputs and results should be.

Speaking as a sysadmin who has been (but is not now) a
tester, I try to take the middle ground. Having at least a short
written test plan will ensure consistency from one test run
to the next. How much detail you need depends upon how
formal your development and test functions are.

The sample test plan documents I found using Google
were complex and intended for large organizations with very
formal development and test processes. Although those
test plans would be good for people with “test” in their job
title, they do not apply well to sysadmins’ more chaotic and
time-dependent working conditions. As in most other as-
pects of the job, sysadmins need to be creative. So here is
a short list of things to consider including in your test plan.
Modify it to suit your needs:
• �The name and a short description of the software being

tested
• �A description of the software features to be tested
• �The starting conditions for each test
• �The functions to follow for each test
• �A description of the desired outcome for each test
• �Specific tests designed to test for negative outcomes
• �Tests for how the program handles unexpected inputs
• �A clear description of what constitutes pass or fail for each test
• �Fuzzy testing, which is described below
This list should give you some ideas for creating your test plans.
Most sysadmins should keep it simple and fairly informal.

. CREATING A BASH SCRIPT TEMPLATE

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/12/source-code-license

10	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

because there is no test environment—only production.
Sysadmins are no strangers to the need to test new or

revised scripts in production. Anytime a script is moved into
production, that becomes the ultimate test. The production
environment constitutes the most critical part of that test.
Nothing that testers can dream up in a test environment can
fully replicate the true production environment.

The allegedly new practice of testing in production is just
the recognition of what sysadmins have known all along. The
best test is production—so long as it is not the only test.

Fuzzy testing
This is another of those buzzwords that initially caused me to
roll my eyes. Its essential meaning is simple: have someone
bang on the keys until something happens, and see how well
the program handles it. But there really is more to it than that.

Fuzzy testing is a bit like the time my son broke the code
for a game in less than a minute with random input. That
pretty much ended my attempts to write games for him.

Most test plans utilize very specific input that generates a
specific result or output. Regardless of whether the test defines
a positive or negative outcome as a success, it is still controlled,
and the inputs and results are specified and expected, such as
a specific error message for a specific failure mode.

Fuzzy testing is about dealing with randomness in all aspects
of the test, such as starting conditions, very random and un-
expected input, random combinations of options selected, low
memory, high levels of CPU contending with other programs,
multiple instances of the program under test, and any other ran-
dom conditions that you can think of to apply to the tests.

I try to do some fuzzy testing from the beginning. If the
Bash script cannot deal with significant randomness in its
very early stages, then it is unlikely to get better as you add
more code. This is a good time to catch these problems and
fix them while the code is relatively simple. A bit of fuzzy test-
ing at each stage is also useful in locating problems before
they get masked by even more code.

After the code is completed, I like to do some more ex-
tensive fuzzy testing. Always do some fuzzy testing. I have
certainly been surprised by some of the results. It is easy to
test for the expected things, but users do not usually do the
expected things with a script.

Previews of coming attractions
This part accomplished a little in the way of creating a tem-
plate, but it mostly talked about testing. This is because test-
ing is a critical part of creating any kind of program. In the
next part in this guide, you will add a basic Help function
along with some code to detect and act on options, such as
-h, to your Bash script template.

Links
[1]	 https://opensource.com/article/18/7/how-be-lazy-sysadmin
[2]	 �https://opensource.com/article/17/12/source-code-license

Test early—test often
I always start testing my shell scripts as soon as I complete the
first portion that is executable. This is true whether I am writing a
short command-line program or a script that is an executable file.

I usually start creating new programs with the shell script
template. I write the code for the Help function and test it.
This is usually a trivial part of the process, but it helps me get
started and ensures that things in the template are working
properly at the outset. At this point, it is easy to fix problems
with the template portions of the script or to modify it to meet
needs that the standard template does not.

Once the template and Help function are working, I move
on to creating the body of the program by adding comments
to document the programming steps required to meet the
program specifications. Now I start adding code to meet the
requirements stated in each comment. This code will proba-
bly require adding variables that are initialized in that section
of the template—which is now becoming a shell script.

This is where testing is more than just entering data and ver-
ifying the results. It takes a bit of extra work. Sometimes I add a
command that simply prints the intermediate result of the code
I just wrote and verify that. For more complex scripts, I add a -t
option for “test mode.” In this case, the internal test code exe-
cutes only when the -t option is entered on the command line.

Final testing
After the code is complete, I go back to do a complete test of
all the features and functions using known inputs to produce
specific outputs. I also test some random inputs to see if the
program can handle unexpected input.

Final testing is intended to verify that the program is func-
tioning essentially as intended. A large part of the final test
is to ensure that functions that worked earlier in the develop-
ment cycle have not been broken by code that was added or
changed later in the cycle.

If you have been testing the script as you add new code to
it, you may think there should not be any surprises during the
final test. Wrong! There are always surprises during final testing.
Always. Expect those surprises, and be ready to spend time fix-
ing them. If there were never any bugs discovered during final
testing, there would be no point in doing a final test, would there?

Testing in production
Huh—what?

“Not until a program has been in production for
at least six months will the most harmful error
be discovered.”
— Troutman’s Programming Postulates

Yes, testing in production is now considered normal and de-
sirable. Having been a tester myself, this seems reasonable.
“But wait! That’s dangerous,” you say. My experience is that it
is no more dangerous than extensive and rigorous testing in a
dedicated test environment. In some cases, there is no choice

CREATING A BASH SCRIPT TEMPLATE .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/7/how-be-lazy-sysadmin
https://opensource.com/article/17/12/source-code-license

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 11

IN THE FIRST PART in this guide, you created a
very small, one-line Bash script

and explored the reasons for creating shell scripts and why
they are the most efficient option for the system administra-
tor, rather than compiled programs. In the second part, you
began the task of creating a fairly simple template that you
can use as a starting point for other Bash programs, then
explored ways to test it.

This third of the four parts in this guide explains how to
create and use a simple Help function. While creating your
Help facility, you will also learn about using functions and
how to handle command-line options such as -h.

Why Help?
Even fairly simple Bash programs should have some sort
of Help facility, even if it is fairly rudimentary. Many of the
Bash shell programs I write are used so infrequently that I
forget the exact syntax of the command I need. Others are
so complex that I need to review the options and arguments
even when I use them frequently.

Having a built-in Help function allows you to view those
things without having to inspect the code itself. A good and
complete Help facility is also a part of program documenta-
tion.

About functions
Shell functions are lists of Bash program statements that are
stored in the shell’s environment and can be executed, like
any other command, by typing their name at the command
line. Shell functions may also be known as procedures or
subroutines, depending upon which other programming lan-
guage you are using.

Functions are called in scripts or from the command-line
interface (CLI) by using their names, just as you would for
any other command. In a CLI program or a script, the com-
mands in the function execute when they are called, then
the program flow sequence returns to the calling entity,
and the next series of program statements in that entity
executes.

The syntax of a function is:

FunctionName(){program statements}

Explore this by creating a simple function at the CLI. (The
function is stored in the shell environment for the shell in-
stance in which it is created.) You are going to create a
function called hw, which stands for “hello world.” Enter the
following code at the CLI and press Enter. Then enter hw
as you would any other shell command:

[student@testvm1 ~]$ hw(){ echo "Hi there kiddo"; }

[student@testvm1 ~]$ hw

Hi there kiddo

[student@testvm1 ~]$

OK, so I am a little tired of the standard “Hello world” start-
er. Now, list all of the currently defined functions. There are
a lot of them, so I am showing just the new hw function.
When it is called from the command line or within a pro-
gram, a function performs its programmed task and then
exits and returns control to the calling entity, the command
line, or the next Bash program statement in a script after
the calling statement:

[student@testvm1 ~]$ declare -f | less

<snip>

hw ()

{

 echo "Hi there kiddo"

}

<snip>

Remove that function because you do not need it anymore.
You can do that with the unset command:

[student@testvm1 ~]$ unset -f hw ; hw

bash: hw: command not found

[student@testvm1 ~]$

Creating the Help function
Open the hello program in an editor and add the Help
function below to the hello program code after the copy-
right statement but before the echo “Hello world!” state-
ment. This Help function will display a short description
of the program, a syntax diagram, and short descriptions

How to add a Help facility
to your Bash program
In the third part in this guide, learn about using functions
as you create a simple Help facility for your Bash script.

. HOW TO ADD A HELP FACILITY TO YOUR BASH PROGRAM

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

12	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW TO ADD A HELP FACILITY TO YOUR BASH PROGRAM .

Handling options
A Bash script’s ability to handle command-line options
such as -h gives some powerful capabilities to direct the
program and modify what it does. In the case of the -h
option, you want the program to print the Help text to the
terminal session and then quit without running the rest of
the program. The ability to process options entered at the
command line can be added to the Bash script using the
while command (see How to program with Bash: Loops [1]
to learn more about while) in conjunction with the getops
and case commands.

The getops command reads any and all options spec-
ified at the command line and creates a list of those
options. In the code below, the while command loops
through the list of options by setting the variable $op-
tions for each. The case statement is used to evaluate
each option in turn and execute the statements in the
corresponding stanza. The while statement will continue
to evaluate the list of options until they have all been
processed or it encounters an exit statement, which ter-
minates the program.

Be sure to delete the Help function call just before the
echo “Hello world!” statement so that the main body of the
program now looks like this:

###

###

Main program

###

###

###

Process the input options. Add options as needed.

###

Get the options

while getopts ":h" option; do

 case $option in

 h) # display Help

 Help

 exit;;

 esac

done

echo "Hello world!"

Notice the double semicolon at the end of the exit state-
ment in the case option for -h. This is required for each
option added to this case statement to delineate the end of
each option.

Testing
Testing is now a little more complex. You need to test your
program with a number of different options—and no op-
tions—to see how it responds. First, test with no options to
ensure that it prints “Hello world!” as it should:

of the available options. Add a call to the Help function
to test it and some comment lines that provide a visual
demarcation between the functions and the main portion
of the program:

###

Help

###

Help()

{

 # Display Help

 echo "Add description of the script functions here."

 echo

 echo "Syntax: scriptTemplate [-g|h|v|V]"

 echo "options:"

 echo "g Print the GPL license notification."

 echo "h Print this Help."

 echo "v Verbose mode."

 echo "V Print software version and exit."

 echo

}

###

###

Main program

###

###

Help

echo "Hello world!"

The options described in this Help function are typical for
the programs I write, although none are in the code yet.
Run the program to test it:

[student@testvm1 ~]$./hello

Add description of the script functions here.

Syntax: scriptTemplate [-g|h|v|V]

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

Hello world!

[student@testvm1 ~]$

Because you have not added any logic to display Help
only when you need it, the program will always display
the Help. Since the function is working correctly, read
on to add some logic to display the Help only when the
-h option is used when you invoke the program at the
command line.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/programming-bash-loops

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 13

. HOW TO ADD A HELP FACILITY TO YOUR BASH PROGRAM

[student@testvm1 ~]$./hello

Hello world!

That works, so now test the logic that displays the Help text:

[student@testvm1 ~]$./hello -h

Add description of the script functions here.

Syntax: scriptTemplate [-g|h|t|v|V]

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

That works as expected, so try some testing to see what
happens when you enter some unexpected options:

[student@testvm1 ~]$./hello -x

Hello world!

[student@testvm1 ~]$./hello -q

Hello world!

[student@testvm1 ~]$./hello -lkjsahdf

Add description of the script functions here.

Syntax: scriptTemplate [-g|h|t|v|V]

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

[student@testvm1 ~]$

The program just ignores any options without specific re-
sponses without generating any errors. But notice the last
entry (with -lkjsahdf for options): because there is an h in
the list of options, the program recognizes it and prints the
Help text. This testing has shown that the program doesn’t
have the ability to handle incorrect input and terminate the
program if any is detected.

You can add another case stanza to the case statement
to match any option that doesn’t have an explicit match.
This general case will match anything you have not pro-
vided a specific match for. The case statement now looks
like this, with the catch-all match of \? as the last case. Any
additional specific cases must precede this final one:

while getopts ":h" option; do

 case $option in

 h) # display Help

 Help

 exit;;

 \?) # incorrect option

 echo "Error: Invalid option"

 exit;;

 esac

done

Test the program again using the same options as before
and see how it works now.

Where you are
You have accomplished a good amount in this part by add-
ing the capability to process command-line options and a
Help procedure. Your Bash script now looks like this:

#!/usr/bin/bash

###

scriptTemplate

#

Use this template as the beginning of a new program. Place

a short description of the script here.

#

Change History

11/11/2019 David Both Original code. This is a template

for creating new Bash shell scripts.#

Add new history entries as needed.

#

#

###

###

###

#

Copyright (C) 2007, 2019 David Both

LinuxGeek46@both.org

#

This program is free software; you can redistribute it

and/or modify ut under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 2 of the License, or (at your option) any

later version.

#

This program is distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License

for more details.

#

You should have received a copy of the GNU General Public

License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330,

Boston, MA 02111-1307 USA

#

###

###

###

###

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

14	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW TO ADD A HELP FACILITY TO YOUR BASH PROGRAM .

 Help

 exit;;

 \?) # incorrect option

 echo "Error: Invalid option"

 exit;;

 esac

done

echo "Hello world!"

Be sure to test this version of the program very thoroughly.
Use random inputs and see what happens. You should also
try testing valid and invalid options without using the dash
(-) in front.

Next time
In this part, you added a Help function as well as the ability to
process command-line options to display it selectively. The
program is getting a little more complex, so testing is becom-
ing more important and requires more test paths in order to
be complete.

The next part will look at initializing variables and doing
a bit of sanity checking to ensure that the program will run
under the correct set of conditions.

Links
[1]	� https://opensource.com/article/19/10/programming-bash-

loops

Help

###

Help()

{

 # Display Help

 echo "Add description of the script functions here."

 echo

 echo "Syntax: scriptTemplate [-g|h|t|v|V]"

 echo "options:"

 echo "g Print the GPL license notification."

 echo "h Print this Help."

 echo "v Verbose mode."

 echo "V Print software version and exit."

 echo

}

###

###

Main program

###

###

###

Process the input options. Add options as needed.

###

Get the options

while getopts ":h" option; do

 case $option in

 h) # display Help

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/programming-bash-loops
https://opensource.com/article/19/10/programming-bash-loops

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 15

IN THE FIRST PART in this guide, you cre-
ated your first, very small,

one-line Bash script and explored the reasons for creat-
ing shell scripts. In the second part, you began creating
a fairly simple template that can be a starting point for
other Bash programs and began testing it. In the third part,
you created and used a simple Help function and learned
about using functions and how to handle command-line
options such as -h.

This fourth and final part in the guide gets into variables
and initializing them as well as how to do a bit of sanity
testing to help ensure the program runs under the prop-
er conditions. Remember, the objective of this guide is to
build working code that will be used for a template for fu-
ture Bash programming projects. The idea is to make get-
ting started on new programming projects easy by having
common elements already available in the template.

Variables
The Bash shell, like all programming languages, can deal with
variables. A variable is a symbolic name that refers to a spe-
cific location in memory that contains a value of some sort.
The value of a variable is changeable, i.e., it is variable. If you
are not familiar with using variables, read my article How to
program with Bash: Syntax and tools [1] before you go further.

Done? Great! Let’s now look at some good practices when
using variables.

I always set initial values for every variable used in my
scripts. You can find this in your template script imme-
diately after the procedures as the first part of the main
program body, before it processes the options. Initializing
each variable with an appropriate value can prevent errors
that might occur with uninitialized variables in comparison
or math operations. Placing this list of variables in one
place allows you to see all of the variables that are sup-
posed to be in the script and their initial values.

Your little script has only a single variable, $option, so far.
Set it by inserting the following lines as shown:

###

###

Main program

###

###

Initialize variables

option=""

###

Process the input options. Add options as needed.

###

Test this to ensure that everything works as it should and that
nothing has broken as the result of this change.

Constants
Constants are variables, too—at least they should be.
Use variables wherever possible in command-line inter-
face (CLI) programs instead of hard-coded values. Even if
you think you will use a particular value (such as a direc-
tory name, a file name, or a text string) just once, create
a variable and use it where you would have placed the
hard-coded name.

For example, the message printed as part of the main
body of the program is a string literal, echo “Hello world!”.
Change that to a variable. First, add the following statement
to the variable initialization section:

Msg="Hello world!"

And now change the last line of the program from:

echo "Hello world!"

to:

echo "$Msg"

Test the results.

. TESTING YOUR BASH SCRIPT

Testing your Bash script
In the fourth and final part in this guide on automation with shell scripts, learn
about initializing variables and ensuring your program runs correctly.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/programming-bash-syntax-tools

16	 A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM

You may not always need this particular sanity test, so com-
ment out the call to CheckRoot but leave all the code in
place in the template. This way, all you need to do to use that
code in a future program is to uncomment the call.

The code
After making the changes outlined above, your code should
look like this:

#!/usr/bin/bash

##

scriptTemplate

#

Use this template as the beginning of a new program. Place

a short description of the script here.

#

Change History

11/11/2019 David Both Original code. This is a template

for creating new Bash shell scripts.#

Add new history entries as needed.

#

#

##

##

##

#

Copyright (C) 2007, 2019 David Both

LinuxGeek46@both.org

#

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 2 of the License, or at your option) any

(later version.

#

This program is distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

#

You should have received a copy of the GNU General Public

License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330,

Boston, MA 02111-1307 USA

#

###

###

###

###

Help

###

Help()

Sanity checks
Sanity checks are simply tests for conditions that need to
be true in order for the program to work correctly, such as:
the program must be run as the root user, or it must run on
a particular distribution and release of that distro. Add a
check for root as the running user in your simple program
template.

Testing that the root user is running the program is easy
because a program runs as the user that launches it.

The id command can be used to determine the numer-
ic user ID (UID) the program is running under. It provides
several bits of information when it is used without any
options:

[student@testvm1 ~]$ id

uid=1001(student) gid=1001(student) groups=1001(student),5000(dev)

Using the -u option returns just the user’s UID, which is eas-
ily usable in your Bash program:

[student@testvm1 ~]$ id -u

1001

[student@testvm1 ~]$

Add the following function to the program. I added it after the
Help procedure, but you can place it anywhere in the proce-
dures section. The logic is that if the UID is not zero, which is
always the root user’s UID, the program exits:

###

Check for root.

###

CheckRoot()

{

 if [`id -u` != 0]

 then

 echo "ERROR: You must be root user to run this program"

 exit

 fi

}

Now, add a call to the CheckRoot procedure just before the
variable’s initialization. Test this, first running the program as
the student user:

[student@testvm1 ~]$./hello

ERROR: You must be root user to run this program

[student@testvm1 ~]$

then as the root user:

[root@testvm1 student]# ./hello

Hello world!

[root@testvm1 student]#

TESTING YOUR BASH SCRIPT .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A SYSADMIN’S GUIDE TO BASH SCRIPTING ... CC BY-SA 4.0 ... OPENSOURCE.COM	 17

{

 # Display Help

 echo "Add description of the script functions here."

 echo

 echo "Syntax: scriptTemplate [-g|h|v|V]"

 echo "options:"

 echo "g Print the GPL license notification."

 echo "h Print this Help."

 echo "v Verbose mode."

 echo "V Print software version and exit."

 echo

}

###

Check for root.

###

CheckRoot()

{

 # If we are not running as root we exit the program

 if [`id -u` != 0]

 then

 echo "ERROR: You must be root user to run this program"

 exit

 fi

}

###

###

Main program

#

###

###

###

Sanity checks

###

Are we rnning as root?

CheckRoot

Initialize variables

option=""

Msg="Hello world!"

###

Process the input options. Add options as needed.

###

Get the options

while getopts ":h" option; do

 case $option in

 h) # display Help

 Help

 exit;;

 \?) # incorrect option

 echo "Error: Invalid option"

 exit;;

 esac

done

echo "$Msg"

A final exercise
You probably noticed that the Help function in your code re-
fers to features that are not in the code. As a final exercise,
figure out how to add those functions to the code template
you created.

Summary
In this part, you created a couple of functions to perform a
sanity test for whether your program is running as root. Your
program is getting a little more complex, so testing is be-
coming more important and requires more test paths to be
complete.

This guide looked at a very minimal Bash program and
how to build a script up a bit at a time. The result is a simple
template that can be the starting point for other, more useful
Bash scripts and that contains useful elements that make it
easy to start new scripts.

By now, you get the idea: Compiled programs are neces-
sary and fill a very important need. But for sysadmins, there
is always a better way. Always use shell scripts to meet your
job’s automation needs. Shell scripts are open; their content
and purpose are knowable. They can be readily modified to
meet different requirements. I have never found anything
that I need to do in my sysadmin role that cannot be accom-
plished with a shell script.

What you have created so far in this guide is just the be-
ginning. As you write more Bash programs, you will find more
bits of code that you use frequently and should be included
in your program template.

Links
[1]	� https://opensource.com/article/19/10/programming-bash-

syntax-tools

. TESTING YOUR BASH SCRIPT

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/programming-bash-syntax-tools
https://opensource.com/article/19/10/programming-bash-syntax-tools

